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Abstract. In this paper we consider a generalized classical mechanics with fractional derivatives. The
generalization is based on the time-clock randomization of momenta and coordinates taken from the con-
ventional phase space. The fractional equations of motion are derived using the Hamiltonian formalism.
The approach is illustrated with a simple-fractional oscillator in a free motion and under an external
force. Besides the behavior of the coupled fractional oscillators is analyzed. The natural extension of this
approach to continuous systems is stated. The interpretation of the mechanics is discussed.

PACS. 05.40.Fb Random walks and Levy flights – 45.20.Jj Lagrangian and Hamiltonian mechanics –
63.50.+x Vibrational states in disordered systems

1 Introduction

The fractional differential equations become very popular
for describing anomalous transport, diffusion-reaction pro-
cesses, superslow relaxation, etc. [1–4] (and the references
therein). The interest is stimulated by the applications in
various areas of physics, chemistry and engineering [5–12].
Nevertheless, the derivation of such equations from some
first physical principles is not an easy matter. The frac-
tional operator reflects intrinsic dissipative processes that
are sufficiently complicated in nature. Their theoretical
relationship with fractional calculus is not yet ascertained
in full.

The classical Hamiltonian (or Lagrangian) mechanics
is formulated in terms of derivatives of integer order. This
technique suggests advanced methods for the analysis of
conservative systems, while the physical world is rather
nonconservative because of friction. The account of fric-
tional forces in physical models increases the complexity
in the mathematics needed to deal with them.

The fractional Hamiltonian (and Lagrangian) equa-
tions of motion for the nonconservative systems were in-
troduced into consideration by Riewe [13]. His approach
is based on a simple observation. If the frictional force is
proportional to velocity, the functional form of a classical
Lagrangian without friction may be added by a term with
the fractional derivative of one-half order. After applying
the variational technique, the obtained equation of mo-
tion for the nonconservative system contains a contribu-
tion of the frictional force. An extension of the fractional
variational problem for constrained systems was offered
in [14,15]. However, as it was observed by Dreisigmeyer
and Young [16], the conception does not lead to a strictly
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causal equation of motion. The point is that the varia-
tional principle utilizes the integration by part. After this
operation the left Riemann-Louville fractional derivative
transforms into the right one which has a reversal arrow of
time. Unfortunately, the attempt to overcome this prob-
lem by means of the treatment of the action as a Volterra
series was unsuccessful [17].

An alternative approach for determining the fractional
equations of motion has been developed recently in [18].
They are derived by means of the fractional normalization
condition. This condition can be considered as a normal-
ization condition for the distribution function in a frac-
tional space. The volume element of the fractional phase
space is realized by fractional exterior derivatives. In this
case the fractional system is described by a fractional
power of coordinates and momenta. Therefore, such frac-
tional systems are essentially nonlinear.

The purpose of the present paper is to provide a gen-
eral method for describing the fractional systems from
some first principles. We will look at the problem from
another point of view. The main difference of our con-
sideration from above is a deep interrelation of the frac-
tional temporal derivative with stable distributions from
the theory of probability. Also, we intend to investigate
some concrete physical applications. Our paper is orga-
nized as follows. The appearance of the fractional deriva-
tive in the equations of motion is conditioned on a peculiar
interaction of a physical system with environment. In Sec-
tion 2 it is shown that the interaction is taken into account
through the temporal variable that represents a sum of
random intervals identically distributed. The probability
distribution of such a sum asymptotically tends to a stable
distribution. Using this approach we derive the equations
of motion in Section 3. Based on the derivation the next
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section is devoted to the fractional oscillator. The effect of
the fractional damping on resonance is considered in Sec-
tion 5. This feature is similar to an exponential damping,
but there are some differences. Further the dynamics of
coupled fractional oscillators is represented in Section 6.
The forced oscillations of a multiple fractional system are
analyzed in Section 7. The generalization of discrete frac-
tional systems on a continuous case is suggested in Sec-
tion 8. In conclusion we discuss an interpretation of the
fractional mechanics.

2 Operational time and subordination

The spacetime is often treated as a continuum. It is some-
thing like an ideal elastic medium. The conjecture is the
overarching principle of all physics. However, the concept
is a fiction. Nowhere does this feature of spacetime show
itself more clearly than at big bang and at collapse that
it cannot be a continuum. The “elasticity” of spacetime
is only an approximation. There are very different view-
points to the space-time problem. One hopes that an ap-
propriate model for spacetime will be built in some sat-
isfactory theory of quantum gravitation. Others opt for
some type of discrete structures abandoning a continuum.
In any case the spacetime is too rich a structure to be
pinned down by a single description. Perhaps, several over-
lapping and possible incompatible descriptions are need to
exhaust the complex variety of spacetime.

Usually, in the ordinary mechanical description, char-
acterizing the motion of a point particle, the time variable
is deterministic. Assume that the time variable represents
a sum of random temporal intervals Ti being nonnegative
independent and identically distributed. Recall here the
basic fact about the density of a positive stable random
variable. Following [19], the density gα(y) of such a vari-
able is defined by its characteristic function
∫ ∞

0

ejωy gα(y) dy = exp{−|ω|α exp[−j (πα/2) sign(ω)]} .

If the waiting times Ti belong to the strict domain of at-
traction of an α-stable distribution (0 < α < 1), their sum
n−1/α(T1 +T2 + · · ·+Tn), n ∈ N converges in distribution
to a stable law. The choice of the index α in the range 0 <
α < 1 is caused by the support of the time steps Ti on the
nonnegative semiaxis. The continuous limit of the discrete
counting process {Nt}t≥0 = max{n ∈ N | ∑n

i=1 Ti ≤ t} is
a first passage time. The process is conventionally denoted
by S(t). For a fixed time it represents the first passage of
the stochastic time evolution above that time level. The
random process S(t) is non-decreasing and depends on the
true time [20]. As is well known from the everyday expe-
rience, time is always running from the past to the future.
The important feature of time turns out to be saved, if
one chooses S(t) as a new time clock. The random pro-
cess gives rise to the stochastic time arrow that is different
on the ordinary deterministic arrow [21].

Although the random process S(t) is self-similar, it has
neither stationary nor independent increments, and all its

moments are finite [22]. This process is non-Markovian,
but it is inverse to the continuous limit of a Markov ran-
dom process of temporal steps T (τ), i.e. S(T (τ)) = τ . The
probability density of the process S(t) has the following
Laplace image

pS(t, τ) =
1

2πj

∫
Br

eut−τuα

uα−1 du , (1)

where Br denotes the Bromwich path, and j =
√−1.

This probability density determines the probability to be
at the internal time τ on the real time t [21]. Carrying out
the change ut → u and denoting z = τ/tα, the function
pS(t, τ) is written as t−αFα(z), where

Fα(z) =
1

2πj

∫
Br

eu−zuα

uα−1 du .

This integral can be studied in almost exactly the same
way as Mainardi [23] originally attacked the probability
density distribution for anomalous diffusion. To bend the
Bromwich path into the Hankel path, the function Fα(z)
can be expanded as a Taylor series. Besides, it has the Fox’
H-function representation [24]. Consequently, we have

Fα(z) = H10
11

(
z
∣∣∣(1 − α, α)

(0, 1)

)
=

∞∑
k=0

(−z)k

k!Γ (1 − α(1 + k))
,

where Γ (x) is the usual gamma function. The function
Fα(z) is entire and non-negative in z > 0. It vanishes
exponentially for large positive z. Taking into account the
normalization relation

∫ ∞
0

Fα(z) dz = 1, it will readily
be seen that the function pS(t, τ) is really a probability
density.

In the theory of anomalous diffusion the random pro-
cess S(t) is used for the subordination of other random
processes. Recall that a subordinated process Y (U(t)) is
obtained by randomizing the time clock of a random pro-
cess Y (t) using a random process U(t) called the direct-
ing process. The latter process is also often referred to as
the randomized time or operational time [25]. These con-
cepts are helpful in formulating the continuous time ran-
dom walk approach, deriving the equation of subdiffusion,
finding its solutions and moments, obtaining a separation
ansatz and in many others. The various features were ex-
haustively analyzed in literature (see, e.g., [26–34]). The
mathematically elegant survey is represented in the pa-
per [22] that especially is recommended for a deep insight
into the interrelation between fractional calculus and the
theory of probability. Nevertheless, it should be noticed
that the exact physical nature of the power-law waiting-
time distributions in the subordination scheme is unclear.
The problem requires a more rigorous examination else-
where.

3 Equations of motion

Many important problems from classical mechanics can
be solved using the Newtonian formalism. Among them
is the problem of motion in a central force field which is
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of fundamental importance in celestial mechanics. On the
other hand the Lagrangian formalism is more suited for
handling problems in the theory of small oscillations and
in studying the dynamics of a rigid body. Hamiltonian me-
chanics contains Lagrangian mechanics as a special case.
In addition the Hamiltonian formalism permits ones to
solve some problems (as the attraction by two stationary
centers and the determination of geodesics on the triaxial
ellipsoid) which do not yield solutions by other means. It
is expected that this route may be followed in the analysis
of fractional systems.

Let a Hamiltonian system evolution depend on oper-
ational time τ . The corresponding equation of motion is
written as

dq

dτ
=

∂H
∂p

,
dp

dτ
= −∂H

∂q
. (2)

Consider a dynamical system for which the momentum
and the coordinate satisfy the relations

pα(t) =
∫ ∞

0

pS(t, τ) p(τ) dτ,

qα(t) =
∫ ∞

0

pS(t, τ) q(τ) dτ.

Their Laplace transform with respect to time has a simple
algebraic form

p̄α(s) =
∫ ∞

0

e−stpα(t) dt = sα−1p̄(sα),

q̄α(s) =
∫ ∞

0

e−stqα(t) dt = sα−1q̄(sα),

where α is in the range of 0 < α < 1. Since the values
∂H/∂p and ∂H/∂q depend on operational time, we
assume that

∂Hα

∂pα
=

∫ ∞

0

pS(t, τ)
∂H
∂p

dτ,

∂Hα

∂qα
=

∫ ∞

0

pS(t, τ)
∂H
∂q

dτ.

In this case equations (2) become fractional:

dαqα

dtα
=

∂Hα

∂pα
= pα,

dαpα

dtα
= −∂Hα

∂qα
. (3)

Here we use the so-called Caputo derivative [35–37] de-
fined as

dαx(t)
dtα

= D̃αx(t) = Jn−αDnx(t)

=
1

Γ (n − α)

∫ t

0

x(n)(τ)
(t − τ)α+1−n

dτ, n − 1 < α < n,

where x(n)(t) = Dnx(t) means the n-derivative of x(t),
and

Jβy(t) =
1

Γ (β)

∫ t

0

y(τ) (t − τ)β−1 dτ

is the fractional integral. In fact, the power-law waiting
times imply fractional derivatives in time. The reader who
desires further background information on fractional cal-
culus will do well to consult the excellent books [38,39].

When α = 1, the generalized equations (3) transform
into the ordinary, namely Hamiltonian equations being
well known from classical mechanics. Thus this point of
view embraces a wide circle of physical tasks. In next sec-
tions we will elaborate some of them.

4 Fractional oscillator

One of the simplest physical models (but nontrivial) sup-
ported by the above-mentioned method is a fractional os-
cillator. Its generalized Hamiltonian takes the form

Hα = (p2
α + ω2q2

α)/2, (4)

where ω is the circular frequency, qα and pα the displace-
ment and the momentum respectively. The value describes
the total energy of this dynamical system [40]. Although
the Hamiltonian (4) is not an explicit function of time,
for non-integer values α the system is nonconservative
because of the fractional derivative of momentum. Then
the Hamiltonian equations for the fractional oscillator are
written as

D̃αqα =
dαqα

dtα
=

∂Hα

∂pα
= pα, (5)

D̃αpα =
dαpα

dtα
= −∂Hα

∂qα
= −ω2qα. (6)

It follows from this that

D̃2αqα + ω2qα = 0 or D̃2αpα + ω2pα = 0. (7)

Each of the equations has two independent solutions. Suf-
fice it to solve one of these equations, for example, that
determines the coordinate:

qα(t) = AE2α,1(−ω2t2α) + B ωtαE2α, 1+α(−ω2t2α), (8)

where A, B are constants, and

Eµ, ν(z) =
∞∑

k=0

zk

Γ (µk + ν)
, µ, ν > 0,

is the two-parameter Mittag-Leffler function. The momen-
tum of the fractional oscillator is expressed in terms of a
fractional time derivative on the coordinate

pα(t) = m D̃αqα(t),

where m is the generalized mass [40]. In this connection
it is relevant to remark that

D̃α E2α, 1(−t2α) = −tαE2α, 1+α(−t2α),

D̃α tαE2α, 1+α(−t2α) = E2α, 1(−t2α).

The phase portrait is a close curve only for the harmonic
oscillator (2α = 2), but in our case this is a spiral. The
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Fig. 1. Phase plane diagram of the fractional oscillator with
α = 1.8.

total energy decreases. An example of the phase plane
diagram for the fractional oscillator is represented in Fig-
ure 1. The intrinsic dissipation in the fractional oscillator
is caused by the following reason. The fractional oscillator
may be considered as an ensemble average of harmonic os-
cillators [41]. The oscillators differ slightly from each other
in frequency because of the subordination. Therefore, even
if they start in phase, after a time the oscillators will be al-
located uniformly up to the clock-face. Although each os-
cillator is conservative, the system of such oscillators with
the dynamics like a fractional oscillator demonstrates a
dissipative process stochastic by nature.

As is shown in [37,42], the fractional oscillations ex-
hibit a finite number of damped oscillations with an al-
gebraic decay (Fig. 2). The fact rests on that such oscil-
lations may be decomposed into two parts. One of them
demonstrates asymptotically an algebraic (monotonic) de-
cay, and another term represents an exponentially damped
harmonic oscillation. Owing to the second term decreas-
ing faster than this happens for the term with an algebraic
decay, the fractional oscillations possess a finite number of
zeros. Our notation ω0 named as a circular frequency is
enough acceptable, since the value characterizes the num-
ber of oscillations on a given temporal interval.

5 Effect of fractional damping on resonance

Now we consider a behavior of the fractional oscillator
under an external force. Following the initial conditions
x(0) = 0 and ẋ(0) = 0, this model is described by the
following equation

x(t) = − ωα
0

Γ (α)

∫ t

0

(t − t′)α−1 x(t′) dt′

+
1

Γ (α)

∫ t

0

(t − t′)α−1 F (t′) dt′ , (9)

0 5 10 15 20 25 30
−0.5

0

0.5

1

t

    Eα,1
(−tα)

tα/2Eα,1+α/2
(−tα)

Fig. 2. Fractional oscillations are characterized by a finite
number of zeros (α = 1.65).

where it should be kept 1 < α < 2, and F is the exter-
nal force. The dynamic response of the driven fractional
oscillator was investigated in [40]:

x(t) =
∫ t

0

F (t′) (t − t′)α−1 Eα, α(−ωα
0 (t − t′)α) dt′. (10)

This allows us to define the response for any desired forc-
ing function F (t). The “free” and “forced” oscillations of
such a fractional oscillator depend on the index α. How-
ever, in the first case the damping is characterized only
by the “natural frequency” ω0, whereas the damping in
the case of “forced” oscillations depends also on the driv-
ing frequency ω. Each of these cases has a characteristic
algebraic tail associated with damping [43].

If F (t) is periodic, namely F (t) = F0 ejωt, then the
solution of equation (9) is determined by taking the inverse
Laplace transform

x(t) =
1

2πj

∫
Br

est F0 (s + jω) ds

(s2 + ω2) (sα + ωα
0 )

. (11)

The Bromwich integral (11) can be evaluated in terms of
the theory of complex variables. Some particular examples
of driving functions in this context were considered in [40].
However, the case under interest was studied in [41]. Con-
sider only the harmonically forced oscillation. If one waits
for a long enough time, the normal mode in this system
is damped. After the substitution x0e

jωt for x(t) in equa-
tion (9) we obtain

x0 ejωt = − ωα
0

Γ (α)

∫ t

0

(t − t′)α−1 x0 ejωt′ dt′

+
1

Γ (α)

∫ t

0

(t − t′)α−1 F0 ejωt′ dt′. (12)

It is convenient to change the variable ω(t− t′) = ζ in the
integrand. Next we can divide out exp(jωt) from each side
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of equation (12) and direct t to infinity. The procedure
permits one to extract the contribution of steady-state
oscillations. Then equation (12) gives

x0 =
F0

[ωα
0 + ωα exp(jπα/2)]

. (13)

The forced solution ρ exp(jωt + θ) is written as

ρ2 =
F0

[ω2α
0 + ω2α + 2ωα

0 ωα cos(πα/2)]
,

tan θ = − ωα sin(πα/2)
ωα

0 + ωα cos(πα/2)
.

Denote ω/ω0 = z. Then we have

ρ2ω2α
0

F0
=

1
[z2α + 2zα cos(πα/2) + 1]

,

tan θ = − zα sin(πα/2)
1 + zα cos(πα/2)

. (14)

It should be noticed that the maximum of ρ2ω2α
0 /F0 is

not attained for ω = ω0. It is shifted to the origin of
coordinates on Figure 3 with decaying α. To differenti-
ate ρ2ω2α

0 /F0 with respect to z, we get the maximum
zmax = α

√
cos[π(2 − α)/2]. For α = 2 the damping in

this oscillator vanishes. If then both frequencies coincide
ω = ω0, the amplitude of the oscillator tends to infinity.

6 Coupled fractional oscillators

From the theory of vibrations it is well known, much of
physical systems permits a description in the form of free
harmonic oscillators. However, such a representation is too
idealized, as in many practical cases these systems are not
usually isolated. Instead, they interact with environment,
or with other oscillators. Therefore, the study of the dy-
namics of driven and coupled oscillators is of major im-
portance.

Here we intend to provide a similar analysis for frac-
tional systems. Consider two identical fractional oscilla-
tors mutually coupled. For 1 < α ≤ 2 the dynamics of
this system is given by

D̃αx1 + ω2
0x1 + κ2(x1 − x2) = 0, (15)

D̃αx2 + ω2
0x2 + κ2(x2 − x1) = 0, (16)

where the two oscillators are labelled by 1 and 2, respec-
tively, and κ2 is the measure of the coupling, ω0 the circu-
lar frequency. Let us introduce new variables u1 = x1 +x2

and u2 = x1 −x2. In such coordinates the system of equa-
tions (15), (16) transforms into the equations of two inde-
pendent fractional oscillators with the frequencies ω0 and√

ω2
0 + 2κ2. If u2 = 0, then x1 = x2 so that both oscilla-

tors move in phase with the frequency ω0. In this case the
coupling between the oscillators has no influence on their
motion. If u1 = 0 or x1 = −x2 that is the same, the os-
cillators evolve in antiphase with the increased frequency√

ω2
0 + 2κ2 in force of the measure of the coupling.
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Fig. 3. Resonance curves and phase shift of the fractional os-
cillator forced by an harmonic oscillation with the frequency ω.

It is often found that the physical systems of interest
consist of two and more oscillators which interact weekly
among them. When the coupling is weak (κ � 1), the frac-
tional oscillators transfer their energy from ones to others
and vice versa. The effect depends on the magnitude of the
index α characterizing a strength of dissipation as well as
on the magnitude of the parameter κ. Nevertheless, due
to the dissipation, finally the fractional oscillations will
decrease in amplitude.

Let two oscillators rest initially. Then one of them gets
D̃α/2x1(0) = B0. Following Section 4, the time evolution
of this system takes the form

x1(t) =
B0

2

[
ω0t

α/2Eα, 1+α/2(−ω2
0t

α)

+ tα/2Eα, 1+α/2(−(ω2
0 + 2κ2)tα)

]
, (17)

x2(t) =
B0

2

[
ω0t

α/2Eα, 1+α/2(−ω2
0t

α)

− tα/2Eα, 1+α/2(−(ω2
0 + 2κ2)tα)

]
. (18)
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Fig. 4. Superposition of two modes (x1 and x2) with α = 1.98, ω0 = 1: (a) κ = 0.3162; (b) κ = 0.2236.

Figure 4 shows a superposition of two fractional oscil-
lations. The oscillations observable are complicated, but
they can be likened to damping beats. Due to this damping
the minimum of x1 does not coincide with the maximum
of x2. The phase shift between them is determined by
the value α, i.e. by the level of dissipation in this system.
Moreover, the algebraic relaxation term of the fractional
oscillations deforms the position of the maxima of x1 and
x2. Distinctly this can be seen in Figure 4b.

The decomposition of the dynamics of coupled frac-
tional oscillators in a superposition of normal modes,
which are simple fractional oscillators, is a major result in
the physics of coupled fractional oscillators. This decom-
position is not restricted to just two coupled oscillators.

An analogous decomposition holds for an arbitrary large
number of coupled fractional oscillators.

7 Forced oscillations of a multiple fractional
system

Let a fractional oscillator have two degree of freedom. The
harmonic force with the frequency p acts on the system
coordinates x and y. Then the equations of motion are
written as{

AD̃αx + HD̃αy + ax + hy = X cos pt,

HD̃αx + BD̃αy + hx + by = Y cos pt
(19)
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Fig. 5. Resonance curves of the fractional oscil-
lator forced with two degree of freedom: X = 3,
Y = 0, α = 1.99, H = h = 1, A = B = 2, a =
b = 3. The dynamical damping is detectable,
when β = 0 and γ �= 0. See text for more de-
tails.

with 1 < α ≤ 2. We shall seek solutions to equations (19)
in the form

x = β cos pt, y = γ cos pt.

The treatment of dynamical equations can be greatly sim-
plified by using the representation in complex numbers.
With this object in view, replace cos pt by ejpt in equa-
tion (19). Next we substitute x = βejpt and y = γejpt in
such a system of equations. Pick out ejpt in each term of
the equations. The fractional derivative of ejpt gives

D̃αejpt = J2−αD2ejpt = −p2J2−αejpt

= −pαejpt

Γ (m)

∫ pt

0

τm−1 e−jτ dτ,

where m = 2−α is constant. Making t → ∞ in the above
integral, we apply the table integral [44]:

∫ ∞

0

zξ−1 e−jz dz = Γ (ξ) e−jπξ/2

for 0 < Re ξ < 1. This technique transforms equations (19)
into the algebraic expressions

{
(a + Apαejπα/2)β + (h + H pαejπα/2)γ = X,
(h + H pαejπα/2)β + (b + B pαejπα/2)γ = Y.

(20)

The steady-state solutions of equations (19) can be derived
from equation (20) by taking the “real” part of β and γ,
i.e. by projecting the motion onto the real axis of x and
y. From equations (20) at once it follows that

β =
1
∆

∣∣∣∣X h + H pαejπα/2

Y b + B pαejπα/2

∣∣∣∣ ,

γ =
1
∆

∣∣∣∣a + Apαejπα/2 X
h + H pαejπα/2 Y

∣∣∣∣ , (21)

where

∆ =
∣∣∣∣ a + Apαejπα/2 h + H pαejπα/2

h + H pαejπα/2 b + B pαejπα/2

∣∣∣∣
is the determinant. Thus the general conclusion is the fol-
lowing. When a periodic force of simple-harmonic type
acts on any part of the system, every part executes a
simple-harmonic vibration of the same period, but the
amplitude will be different in different parts. When the
period of the forced vibration nearly coincides with one
of the free modes, an abnormal amplitude of forced vibra-
tion will be in general result, owing to the smallness of the
denominator on the formulae (21).

If X �= 0, Y = 0, then

γ = −X(h + H pαejπα/2)
∆

. (22)

Imagine now a second case of forced vibration in which
X = 0, Y �= 0. This yields

β = −Y (h + H pαejπα/2)
∆

.

Comparing with equation (22), we see that

γ : X = β : Y. (23)

The result concerns a remarkable theorem of reciprocity,
first proved for the theory of aerials by Helmholtz, and
afterwards greatly extended by Rayleigh. Their interpre-
tation is most easily expressed when the “forces” X , Y
are of the same character in such a way that we may put
X = Y and obtain β = γ. The coupled fractional os-
cillators forced by harmonic oscillations support well the
theorem. Indeed, it is clear in view of their equations of
motion being linear.

The resonance curves are represented in Figure 5.
Here we consider the case, when X �= 0, Y = 0.
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The curves demonstrate the following interesting effects:
1) if the exterior force frequency Ω coincides with one
of normal frequencies of this system, the amplitudes of
both oscillators increase; 2) if the frequency of the ex-
terior force, acting on the first oscillator, coincides with
α
√

b/{B cos(π(2 − α)/2)} > 0, then the first oscillator
is rest (β = 0). The latter phenomenon is called the
dynamic damping often used for the breaking of unfa-
vorable oscillations [45]. For the exterior force frequency
α
√

h/{H cos(π(2 − α)/2)} > 0 the second oscillator will
be rest.

The extension of the method to the general case of lin-
ear fractional oscillations of a multiple system is obvious
so that the result may be stated formally. In such a system
with k degrees of freedom there are in general k distinct
“normal modes” of free fractional vibrations about a con-
figuration of stable equilibrium, the frequencies of which
are given by a symmetrical determinantal equation of the
k-th order in pαejπα/2, analogous to equation (20). In each
of these modes the system oscillates exactly as if it had
only one degree of freedom.

8 Transition to continuous systems

At least mathematically, it is sometimes possible to pass
from the study of oscillatory systems of finite freedom
to continuous systems by a sort of limiting process. So
D. Bernoulli (1732) considered the vibrations of a hang-
ing chain as a limiting form of the problem where a large
number of equal and equidistant particles are attached to
a tense string whose own mass is neglected. The general
principles may be applied to fractional systems too. In this
section we shall be concerned with fractional systems for
which the number of degrees of freedom becomes infinite.

The lattice represents the most illustrative example
which is naturally called by the ordered structure of oscil-
lators. To start with an one-dimensional chain of identical
fractional oscillators, the characteristic spatial period of
wave motion in this chain is assumed to be too more than
the mesh dimension. If the oscillators interact with the
nearest neighbours, they are described by the equations
of type

dαφn

dtα
+ ω2

0φn = M(φn−1 + φn+1 − 2φn), (24)

where M is constant, and 1 < α ≤ 2. Proceeding from
the discrete system to a continuous one, we arrive at the
equation in partial derivatives

∂αφ

∂tα
− v2 ∂2φ

∂x2
+ ω2

0φ = 0, (25)

where v2 = Ma2, and a is the mesh size. If ω0 = 0, the
equation (25) is simplified so that its solution is

φ(x, t) =
∫ ∞

0

pS(t, τ)
{

f1(vτ −x)+ f2(vτ −x)
}

dτ, (26)

where the functions f1, f2 are arbitrary. The two terms
in equation (26) admit of a simple interpretation. They

represent damped-in-time waveforms traveling in the di-
rection of x-positive and x-negative.

In this connection it should be necessarily mentioned
that for 0 < α ≤ 1 equation (25) will describe an anoma-
lous diffusion with a potential. Then the function φ(x, t)
becomes a probability density. Thus the value has quite
an other interpretation [46] in comparison with the above-
mentioned case.

9 Interpretation and discussion

Nature is permeated with oscillatory phenomena. Pulsat-
ing stars and earthquakes, oscillating chemical reactions
and long term variations of the Earth’s magnetic fields,
circadian rhythms and beats of the heart, electromagnetic
waves and modes of oscillation of the atom nucleus are
examples of this kind of phenomena among many oth-
ers. Electrical and mechanical oscillators are everyday con-
stituents in the world of engineering. Usually an oscilla-
tor is something that behaves cyclically, changing in some
way, but eventually getting back to where it started again.
The fractional calculus extends our representation about
oscillatory phenomena. The temporal evolution of frac-
tional oscillator models occupies an intermediate place be-
tween a power relaxation and pure harmonic oscillations.
The fractional oscillator clearly demonstrates a pure alge-
braic decay together with an exponentially damped har-
monic motion.

The modification of the conventional representation of
the Hamilton equations is conditioned on a random in-
teraction of the subsystems with environment. Each sub-
system is governed by its own internal clock. Although
its dynamics is described by the ordinary Hamiltonian
equations, their coordinates and momenta depend on the
operational time. The passage from the operational time
to the physical time through the averaging procedure ac-
counts for the interaction of the subsystem with environ-
ment. Consequently, the whole of subsystems behaves as
a fractional system.

The author thanks G. Zaslavsky and D. Dreisigmeyer for fruit-
ful discussions.
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